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On the Graphical Representation of Electric
Field Lines in Waveguide

PAUL E. MOLLER, MEMBER, IEEE, AND ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

Abstract —A method is presented for illustrating the time-varying behav-

ior of electric field lines in the neighborhood of a paraflel-plate waveguide

E-plane step discontinuity. Sequences of electic field plots illustrating the

time-varying behavior for several E-plane step heights are included. The

method presented is applicable to analogous junctions in rectangular wave-

gnide and can be extended to more complex waveguide structures.

I. INTRODUCTION

T HE PLOTTING of electrostatic field lines and poten-

tials in the neighborhood of charged conductors has

had a long history. Indeed one must look hard to find more

interesting and elegant field plots than those to be found at

the end of Volume I of Maxwell’s famous treatise [1] which

first appeared over one hundred years ago. Moreover,

two-dimensional field plots for a wide variety of configura-

tions have been achieved by conformal mapping tech-

niques [2], [3, ch. 6]. In addition, the well-known scheme of

solving Laplace’s equation by the method of curvilinear

squares is routinely presented in many undergraduate

textbooks [4], [5].

The more difficult problem of obtaining a graphical

representation of solutions to the Hehnholtz equation, and

in particular field plots in waveguide, has also occupied the

attention of many workers. Most text books [6], [7] il-

lustrate the lines of the electric and magnetic fields of the

lower order modes in rectangular and circular waveguide.

In the Waueguide Handbook [7], one finds some good

illustrations of the fields in coaxial and elliptical wave-

guides as well.

With the advent of the large digital computer, numerical

techniques became very popular. Beaubien and Wexler [8]

used the finite-difference method to obtain cross-sectional

contour plots of constant E, and constant Hz (TM and TE

modes) for rectangular, circular, ridge, and lunar wave-

guides. Using the finite-element method, Silvester [9] showed

that similar contour plots could be generated. Later, some

very fine contour plots of E= and Hz in dielectric-loaded

waveguide appeared in a paper by Csendes and Silvester

[10] and at the same time Beaubien and Wexler [11]

presented an improved finite-difference method, with
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numerous cross-sectional contour plots of E, and H, in a

variety of guides, including a T-septate guide.

In some recent papers, the conservation of complex

power techniques has been used to solve some problems

involving the junctions of parallel plate [12], [13] and

rectangular [14] waveguides. In particular, if a single domi-

nant mode is incident from one of the waveguides, the

technique provides the amplitudes and phases of all

scattered modes and, in principle, is exact; however, in the

numerical solutions, a finite number of modes are suffi-

cient to provide a satisfactory representation of the total

electromagnetic field in the neighborhood of the junction.

Using the modal series expansions (TM modes only) for

the fields on either side of an E-plane step junction of two

parallel-plate waveguides, this paper presents a technique

for plotting the lines (in the sense of Faraday) of the real

instantaneous electric field in the neighborhood of the

junction. A single TEM wave is assumed to be incident

from the smaller of the two guides. The plots are in the yz

plane containing the guide axis rather than in the xy

(transveqe plane). Moreover, they represent the vector
E-field EYZ rather than contour plots of E= as in [8]-[11].

II. NORMAL MODE EXPANSION OF WAVEGUIDE

FIELDS

Let us assume that the waveguide electric fields are

known in terms of an expansion series of normal modes

[12], [13]. In this paper, we will be considering parallel-plate

waveguides, with attention being given to the dynamic field

behavior in the neighborhood of E-plane steps connecting

two waveguides (refer to Fig. 1) when there is a dominant

TMO mode wave incident on the junction from the smaller

of the two guides.

Accordingly, it is easy to show that the y and z compo-

nents of the real instantaneous TM fields are as follows:

&ly(y, z,t)=cos(~t –kOz)+aOcos(ut +kOz+ @O)

w

()+~ a.cos qb y e“’mzcos(tit +o~) (1)
~=z 1

m even

~lz(y,z,t)= f a ~
()

sin Ty
rnalm lm bl~=z

m eYen

.ea’m’cos(ot+ @~), o< Iyl <b/2, Z <O. (2)

In (1) and (2), a is the operating frequency and c is the
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Fig. 1. Parallel-plate wavegulde junction with E-plane step discon-
tinuity.

velocity of light; then

The incident TEM mode’s amplitude is unity and a~eJ@m
is the complex amplitudeof the m th reflected mode,

m = 0,2,4, ..-. It is assumed that only the TEM mode

(m= O) can propagate.

On the other side of the junction (z= O), the fields are

fl,y(y,z,t)=bocos(at -koz+oo)
cc

()+~bxcos Eb2 Y
e-.2.~co5(@t + on) (4)

~=’2
n even

()

Fz,(Y,z,i)= ~ b ~sin ~y e-”’”zcos(tit+~n),
n ff2n 2~=z 2

E even

IYI S &/2, z >0 (5)

and where

/(-)nv 2

a2,1 =
b,

–k:. (6)

In (4) and (5), be@’ is the complex amplitude of the n th

transmitted mode, n = 0,2,4, . . . . Both m and n are even

due to the even symmetry of the junction and the TEM

e~citation.

III. REPRESENTATION OF THE ELECTRIC FIELD

LINES

We follow the traditional definition of electric field lines.

The tangent vector at any point on a curvilinear electric

field line is in the direction of the electric field strength #

at that point and the density of lines in the neighborhood

of the point is proportional to I#l.

Each electric field line is approximated by a sequence of

line segments of equal length, the first of which is at a

plane of symmetry in the waveguide which is the central

pllane y = O, as indicated in Fig. 1. The initial line segments

are perpendicular to this plane; physically it is equivalent

tc) an electric wall with the normal E-field proportional to

the surface electric charge density

Co&y(o,z, t )=(J,. (7)

(a) g (z)= cos (Wto-i%,z)
(+EM WAVE)

y=O PLANE

.

Fig. 2. (a) Distribution of electric field line starting points for a single

TEM wave. (b) Distribution of electric field line starting points for a

generat field.

Moreover, the problem of scattering by an asymmetric

E-plane step in which the bottom wall of each waveguide is

at y = O has the same solution as that in the upper half of

the symmetric structure. In the former case, the initial line

segments are at the surface of the bottom wall, perpendicu-

lar to it, and with a density proportional to u,.

IV. CALCULATION OF THE STARTING POINTS

The starting points of the initial line segments can be

regarded as being at the surface charges (equivalent or

actual) on the plane y = O; the charge density is propor-

tional to &’Y(O, z, t). Consequently, for any fixed time, say

t= to,the normal E-field at y = O is a known function of z

(given by (1) and (4) with y = O). In Fig. 2(a) is a graph of

the field when there is only a single positively traveling

wave (a~=O, m= 0,2,4, . . . ) and Fig. 2(b) illustrates a

more general distribution of &Y.

In the quasi-trivial case of Fig. 2(a), we specify the total

number of lines N associated with each half cycle of the

wave; in usual practice, 10< N <50, with the computer

time to plot the field lines increasing linearly with N. Next,

we locate the nulls of &Y in the range of interest zti~ < z <

z
max - Let z. be the nth such null with ZO< Zm. < ZI < Zz

< . . . <Zx<. ..<zmm < ZQ+l.
In any half wavelength interval, say z. < z < Zn+ ~, the N

lines of the electric field start at points z., * and are

located at the centers of sub-intervals. The integral of #Y

(surface charge) over each sub-interval is (1/N)th of the

total integral (surface charge) between nulls. It follows that

the m th line’s starting point is

zn,m =H%,m+l+%,m) (8)

where

kON z.,-+,
m=—

2 J
COS(@to – koz) dz (9)

%,1

with m = 1,2,. “ “, N – 1, and ~~ ~= z.. It is straightforward

to show that for the single positively traveling TEM wave

()
C05–1 1—?!??

2n.m+l =Zn+
27r

N A. (lo)

where A ~ is the TEM mode’s wavelength.
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In the general case where the field 8} involves higher

order modes, it is still possible to determine the nulls

numerically by means of the modal series expansions and a

standard zero finding routine. However, the integral of #Y

between any two successive nulls, say z. and z.. ~, will in

general not correspond to an integer number of lines N..

Accordingly, for the general case, (9) is replaced by

kojv Zn,m+l
m.T— J“2=”

8Y dz , m=l,2,3,. ... Nl–l.

(11)

In (11), Tn the “tweaking” factor is defined as

(12)

In (12), Integer[x] indicates the integer nearest x. Thus, the

“tweaking” factor adjusts the overall strength of &y so that

an integer number of lines will be located between each

pair of nulls, an obviously necessary graphical constraint.

The integration in (11) and (12) is performed numerically

in the general case due to the large number of modes

involved.

~. SEQUENTIAL PLOTTING OF THE ELECTRIC FIELD

LINE SEGMENTS

Due to the even symmetry of the electric field ~(y, z, t)

about the center line y = O, we will describe the plotting

procedure only for the y >0 region. From each starting

point z., ~ on the y = O axis of symmetry, a perpendicular
line segment of length A is drawn (see Fig. 3). Its end point

is (y= A, z = z., ~). The segment length is normally be-

tween one tenth and one fiftieth of the height of the

waveguide with plotting time inversely proportional to A.

The second and subsequent line segments, but not the

last, are determined according to the following scheme.

a) Let @i_~ be the direction of the (i – l)th line segment
and its end point be at p,~i = (y,: ~,z,~ ,).

b) The initial direction of the i th line segment is taken to

be the same as that of the (i – l)th segment.

c) In the angular interval ~ Ad, centered on the initial

direction 9i_l, the geometrical slope of a line segment with

starting point p,:, and angle ~, = 6,_, + 80, is simply

‘g,i(~z)=~=tan(e,).
z

(13)

The slope of the electric field vector at the midpoint of the

same line segment is

(14)

..-
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z

Fig. 3. Angular relations in the construction of the t th segment of an
electric field line.

d) The angle ~, is then varied until

[s~.i(pl)-sef,,(~l)]l~=o=0 (15)

where 13,is the angle of the i th line segment whose slope is

equal to the slope of the E-field at its midpoint. This is

accomplished numerically by using (13) and (15) together

with a suitable zero finding routine on a digital computer.

The angular interval 2 Ad over which the zero of (15) is

sought is taken to be equal to or less than 90° in practice.

It is also convenient to avoid the case when the slopes

given by (13) and (14) become very large (#1= + 900). This

can be done by matching inverse slopes, easily derived from

(13)-(15). Indeed, if 10l_ll >45°, then we use the inverse

slope formulation for 6,, and if 16i_ ~1<45°, the slope

equations are employed.

VI. TERMINATING THE LINES

The sequence of line segments representing a particular

line of electric field will eventually approach the conduct-

ing waveguide top wall or curve back to the center line at

y = O or perhaps simply pass beyond the interval [zm., z~=]

in which we are interested in a field plot. Fig. 4 indicates

the eight distinct terminating regions for our particular

problem.

In the plotting sequence, each line segment’s end point

P.+ is monitored tO check if it has fallen into w terminat-
ing region. If it hasn’t, the plotting continues; if it has, the

next line is a terminating line whose direction is dictated

by the nature of the region, with, for example, a perpendic-

ular segment joining p,+ to any nearby conducting wave-

guide wall or in our case to the center line y = O. For

region 2, the terminating line joins p,+ to the corner point

at y = bl/2, z = O.

VII. THE ELECTRIC FIELD LINE PLOTS

The plotting methods described in Sections IV–VI were

implemented on a digital computer (IBM 4341) in Fortran

code. Plots of the field lines were then produced with a

Zeta 3653 SX drum plotter.

Let us first consider the asymmetric case where y = O is

the lower wall of the waveguide structure and the upper
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TABLE I

NUMBER OF MODES USED AS A FUNCTION OF DISTANCE
FROM THE JUNCTION PLANE

lzl/~o Small Guide Large Guide

o 24 24 48 48

0.10 18 14 44 32
0.25 8 8 16 14

0.50 6 6 10 8
0.75 4 4 8 6

l.oil 4 4 6 6

Fig. 4. Terminating regions for the single E-plane step discontinuity in
waveguide.

,,

J

Fig. 5. Electric field lines at an asymmetric 1:2 E-plane step discon-

tinuity in parallel-plate waveguide with a TEM wave incident from the
smaller guide; b2/2 = bl =0.4 Ao, t = O, N=8, A = bl/6, Izl < Ao/2..

walls of the two parallel-plate guides are at

bz
y =().2AO= $ and y =0.4AO= ~.

Let N = 8 and A = bl/6, a rather coarse representation

which clearly illustrates the principle of the line segment

method of field plotting. Fig. 5 gives the resulting plot for

the interval Iz I < AO/2 and for tO = O, the instant at which

the crest of the incident TEM wave is striking the junction

at z = O. The ends of line segments are marked by “+”

signs. In the smaller guide, the field lines differ only

slightly from the vertical lines of the TEM modes. This is

due to the rapid attenuation of the higher order cutoff

modes reflected from the junction. In the larger guide, this

attenuation is considerably less and results in the field lines

curving back to the top wall at z = O. In this case, the

Klgher order modes in the larger guide die out for practical

purposes by z = 0.50 Xo, at which point there is only the

TEM transmitted wave passing out of our region of inter-

est. Accordingly, to save computation time, the maximum

number of available modes are used to compute &Y and 4?=

in the immediate neighborhood of the discontinuity and

progressively fewer are used as Iz I increases.

In the small guide at a particular value of z <O, we

elmploy the following criteria:

for &x, if e ““z< y, fi is the highest order mode used,

for &Y, if e ““= < yalm, % is the highest order mode used.

The factor y is an arbitrary small number. In the large

guide for a particular z >0, we have the corresponding

criteria:

for &X, if e- a“= < \bOly, ii is the highest order mode used,

for &Y, if e ‘*2fiz < lbOlya2fi,

2 is the highest order mode used.

,,1,

1111

!!, ,!!, ,!, $ ,

bl=0.40 LO
:;

!,, 1

b2= 0.80 AO

Fig. 6. Electric field lines at a symmetric 1:2 E-plane step discontinuity

in parallel-plate waveguide with a TEM wave incident from the smaller
guide; bz = 2bl = 0.80 Ao, AT= 0.05 T, N= IO, A = bl/33.

Ibol is the amplitude of the dominant TEM mode scattered

into the larger guide.

Table I indicates the number of modes used at various

distances from the junction illustrated in Fig. 5, when the

maximum number of available modes in the smaller and

larger guides m-e, respectively, 12 (m ~= = 24) and 24 (n ~=

= 48), and when y = 10”.

Figs. 6–8 show field line plots for the case of symmetric

junctions of parallel-plate waveguides (E-plane steps) when

incidence is from the smaller (left) guide in the form of a

TMO wave. In all cases, the number of lines per half
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wavelength of the incident wave has been increased to

N=10 and theline segments decreased to A= bl/33. To

illustrate the dynamic behavior of the scattering by such

junctions, the first half of a period is covered in increments

of At = 0.05 T from O to 0.45 T. The second half of the RF

period yields identical plots except for a reversal of the

lines of the E-field.

A 1:2 E-plane step with bl = 0.4 AO and bz = 0.8 XO is

shown in Fig. 6. The crest of the incident wave appears at

the junction at t = 0.00 T. Note the high E-field (density of

lines) at the two 90° comers (z= O, y = + bl/2). This is

expected since the edge condition [12, p. 341] dictates that

1~1 is proportional to r – 1/3 where r is the radial distance

from the corner; As the cre~t of the TMO wave travels past

the junction, the electric field lines can be seen terminating

on the vertical walls. Finally, the electric field lines become

nearly vertical as the higher order modes decay and the

TMO mode again dominates. The number of electric field

lines is reduced because, in this case, the TMO transmission

coefficient ma~itude is lbol = 0.63.
Fig. 7 shows a 1:3 E-plane step in which bl = 0.2 A~

and b2 = 0.6 A,O.The waveguide dimensions of Fig. 7 are

smaller than that of Fig. 6 and thus the higher order modes

die off faster. Whereas in Fig. 6 the higher order modes

have mostly decayed by z = 0.6 X ~, in Fig. 7 the modes

have mostly decayed by z = 0.3 AO.
.,

‘ Fig. 8 shows a 1:3 E-plane step in which bl = 0.4 AO

and b2 =1.2 A ~. The most interesting feature is the vortex

of E-field lines closing OD themselves (instead of on surface

charge at y = Y b2/2). This is due to the interaction of the

TEM (TMO) mode and the TM2 mode which for h guide

height of 1.2 A is a propagating mode. Its phase velocity is

about 1.8 times the velocity of light and its amplitude is

comparable to that of the TEM mode (lbzl = 0.51, IbOl =

0.31).

---l{-
w0.35T

---~ -=. --- --

b2=060k0

Electric field lines at a symmetric 1:3 E-plane step discontinuity
in parallel plate waveguide with a TEM wave incident from the smaller
guide; bz = 3bl = 0.60 Ao, AT= O.05 T, N=1O, A =bl/33.

I I

VIII. DISCUSSION AND CONCLUSIONS

This paper has illustrated the dynamic (time varying)

behavior of electric field lines in the neighborhood of an

E-plane step discontinuity in parallel-plate waveguide. The

technique is exact in principle since plotting f’nvolves a

complete set of TM modes, and the line density N and line

segment length A are arbitrary. In our examples, about 24

modes in the smaller of the two waveguides, line densities

of N =10 per half wavelength of the incident wave, and

line segments of A = 3 percent of the smaller height were

used to yield the field line plots of Figs. 6–8.

In regard to computation and plotting times using the

IBM 4341 computer and the Zeta 3653 SX drum plotter,

the plot of Fig. 5 involved 50 s of time for mode coefficient

generation (24 modes in the smaller guide and 48 in the

larger) ~d about 80 s to calculate the electric field lines.

Plotting of each of the ten plots in Figs. 6–8 took about 18

tin, with each original hard copy plot being about 40

cm x 20 cm.
The sequence of images of EYZ in Figs. 6–8 suggests that

one could make a moving picture with a sufficient number

of such “cartoons.” We have done so using At= 0.25 T

, L

r ,

f--q
/’

1, tql(——
,,

bL=040!,o

1- 2.5 A.
d

Fig. 8. Electric field lines at a symmetric 1:3 E-plane step discontinuity
in parallel plate waveguide with a TEM wave incident from the smaller

guide; b2 = 3bl =1.20 Xo, AT= O.05 T, N=1O, A = bl/33.
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and 1:2 E plane step. The resulting “film”, recorded on

video tape, lasts about 110 s and corresponds to 16 periods

of the RF field. The, field lines move in somewhat jerky

fashion but we are reasonably sure that if At were reduced

to 0.0125 T and the time per period reduced to say 4 s, we

could, with a resulting frame rate of 20 per second, achieve

a very acceptable representation of the electric field lines’

dynamic behavior.

Although used here for the quite simple configuration of

an E-plane step in parallel-plate waveguide, this method is

applicable to analogous junctions in rectangular waveguide

[14]. In the near future, we are aiming at obtaining

electric field line plots in the neighborhood of a thick

diaphram with a circular iris located in rectangular wave-

guide. Later we hope to get plots for a resonator cavity

made up of two such diaphrams in rectangular waveguide.

Many other waveguide junctions can be considered.
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