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On the Graphical Representation of Electric
Field Lines in Waveguide

PAUL E. MOLLER, MEMBER, IEEE, AND ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

Abstract — A method is presented for illustrating the time-varying behav-
ior of electric field lines in the neighborhood of a parallel-plate waveguide
E-plane step discontinuity. Sequences of electric field plots illustrating the
time-varying behavior for several E-plane step heights are included. The
method presented is applicable to analogous junctions in rectangular wave-
guide and can be extended to more complex waveguide structures.

I. INTRODUCTION

HE PLOTTING of electrostatic field lines and poten-

tials in the neighborhood of charged conductors has
had a long history. Indeed one must look hard to find more
interesting and elegant field plots than those to be found at
the end of Volume I of Maxwell’s famous treatise [1] which
first appeared over one hundred years ago. Moreover,
two-dimensional field plots for a wide variety of configura-
tions have been achieved by conformal mapping tech-
niques [2], [3, ch. 6]. In addition, the well-known scheme of
solving Laplace’s equation by the method of curvilinear
squares is routinely presented in many undergraduate
textbooks [4], [5].

The more difficult problem of obtaining a graphical
representation of solutions to the Helmholtz equation, and
in particular field plots in waveguide, has also occupied the
attention of many workers. Most text books [6], [7] il-
lustrate the lines of the electric and magnetic fields of the
lower order modes in rectangular and circular waveguide.
In the Waveguide Handbook [7], one finds some good
illustrations of the fields in coaxial and elliptical wave-
guides as well.

With the advent of the large digital computer, numerical
techniques became very popular. Beaubien and Wexler [8]
used the finite-difference method to obtain cross-sectional
contour plots of constant E, and constant H, (TM and TE
modes) for rectangular, circular, ridge, and lunar wave-
guides. Using the finite-element method, Silvester [9] showed
that similar contour plots could be generated. Later, some
very fine contour plots of E, and H, in dielectric-loaded
waveguide appeared in a paper by Csendes and Silvester
[10] and at the same time Beaubien and Wexler [11]
presented an improved finite-difference method, with
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numerous cross-sectional contour plots of E, and H, in a
variety of guides, including a T-septate guide.

In some recent papers, the conservation of complex
power techniques has been used to solve some problems
involving the junctions of parallel plate [12], [13] and
rectangular [14] waveguides. In particular, if a single domi-
nant mode is incident from one of the waveguides, the
technique provides the amplitudes and phases of all
scattered modes and, in principle, is exact; however, in the
numerical solutions, a finite number of modes are suffi-
cient to provide a satisfactory representation of the total
electromagnetic field in the neighborhood of the junction.

Using the modal series expansions (TM modes only) for
the fields on either side of an E-plane step junction of two
parallel-plate waveguides, this paper presents a technique
for plotting the lines (in the sense of Faraday) of the real
instantaneous electric field in the neighborhood of the
junction. A single TEM wave is assumed to be incident
from the smaller of the two guides. The plots are in the yz
plane containing the guide axis rather than in the xy
(transverse plane). Moreover, they represent the vector
E-field Eyz rather than contour plots of E, as in [8]-[11].

II. NORMAL MODE EXPANSION OF WAVEGUIDE
FIELDS

Let us assume that the waveguide electric fields are
known in terms of an expansion series of normal modes
[12], [13]). In this paper, we will be considering parallel-plate
waveguides, with attention being given to the dynamic field
behavior in the neighborhood of E-plane steps connecting
two waveguides (refer to Fig. 1) when there is a dominant
TM,, mode wave incident on the junction from the smaller
of the two guides.

Accordingly, it is easy to show that the y and z compo-
nents of the real instantaneous TM fields are as follows:

&1,(y,z,1) =cos(wt — koz)+agcos(wt + koz + dy)

)
+ 2
m=2

m even

amcos(m?zr-y>e"‘lmzcos(wt +¢,) (1)
1

y i ma ma
&, (y,z,t)= a ———-——sin(— )
! (y ) m2=:2 ™ 01,01 e b, Y
m <yen

cetmicos(wt+¢,), O0<|y|<b/2,z<0. (2)

In (1) and (2), « is the operating frequency and c is the
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Fig. 1. Parallel-plate wavegwde junction with E-plane step discon-
tinuity.

velocity of light; then

/ 2
k0=—‘;—’, almﬂ/(—’%) —kZ>0.

The incident TEM mode’s amplitude is unity and a,,e/*"
is the complex amplitude of the mth reflected mode,
m=0,2,4, ---. It is assumed that only the TEM mode
(m = 0) can propagate.

On the other side of the junction (z = 0), the fields are

(g)Zy(y’ z,t) =bycos(wt —kyz+ ;)
0

+ X

n=72

n even

(3)

nw

b, cos( b, y

)e~az»2cos(wz 18) (4

&, (y,z,1)= Y b, L sin(ﬂy)e*"‘“zcos(thrﬂn),
n=2 ay,b, b,
|/ <by/2,2>0 (5)
and where
2
nw
a2n= (_b_) —kg (6)
2

In (4) and (5), b,e/: is the complex amplitude of the nth
transmitted mode, »=0,2,4, - -- . Both m and » are even
due to the even symmetry of the junction and the TEM
excitation.

III. REPRESENTATION OF THE ELECTRIC FIELD

LINES

We follow the traditional definition of electric field lines.
The tangent vector at any point on a curvilinear electric
field line is in the direction of the electric field strength &
at that point and the density of lines in the neighborhood
of the point is proportional to |¢95 |-

Each electric field line is approximated by a sequence of
line segments of equal length, the first of which is at a
plane of symmetry in the waveguide which is the central
plane y = 0, as indicated in Fig. 1. The initial line segments
are perpendicular to this plane; physically it is equivalent
to an electric wall with the normal E-field proportional to
the surface electric charge density

€6,(0,2,t) =0,

(7
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Fig. 2. (a) Distribution of electric field line starting points for a single
TEM wave. (b) Distribution of electric field line starting points for a
general field.

Moreover, the problem of scattering by an asymmetric
E-plane step in which the bottom wall of each waveguide is
at y = 0 has the same solution as that in the upper half of
the symmetric structure. In the former case, the initial line
segments are at the surface of the bottom wall, perpendicu-
lar to it, and with a density proportional to o,.

IV. CALCULATION OF THE STARTING POINTS

The starting points of the initial line segments can be
regarded as being at the surface charges (equivalent or
actual) on the plane y =0; the charge density is propor-
tional to &,(0, z, r). Consequently, for any fixed time, say
t =t,, the normal E-field at y = 0is a known function of z
(given by (1) and (4) with y = 0). In Fig. 2(a) is a graph of
the field when there is only a single positively traveling
wave (a,,=0, m=0,2,4, ---) and Fig. 2(b) illustrates a
more general distribution of &,.

In the quasi-trivial case of Fig. 2(a), we specify the total
number of lines N associated with each half cycle of the
wave; in usual practice, 10 < N < 50, with the computer
time to plot the field lines increasing linearly with N. Next,
we locate the nulls of &, in the range of interest z,,;, <z <
Zax- L€t z, be the nth such null with zy <z, <z, <z,
<<z, < <2 <Zgyg

In any half wavelength interval, say z, <z<z,,,, the N
lines of the electric field start at points 2, , and are
located at the centers of sub-intervals. The integral of &,
(surface charge) over each sub-interval is (1/N)th of the
total integral (surface charge) between nulls. It follows that
the mth line’s starting point is

(8)

_ (=& a~
Zn,m - Z(Zn,m+1 + Zn,m)
where
kON 2n.m+1
2

m= cos(wig—kyz) dz

[ ©)

with m=1,2,--+, N—1,and %, | = z,. It is straightforward
to show that for the single positively traveling TEM wave

cos_l(l— %)
z =z,+ Ao (10)

n.m+1

2a
where A is the TEM mode’s wavelength.
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In the general case where the field &, involves higher
order modes, it is still possible to determine the nulls
numerically by means of the modal series expansions and a
standard zero finding routine. However, the integral of &),
between any two successive nulls, say z, and z,_;, will in
general not correspond to an integer number of lines N,.
Accordingly, for the general case, (9) is replaced by

__koN
-7,~2

Zn,m+1

&,dz, m=1,23,--,N,—1.

(11)

Zn

In (11), 7, the “tweaking” factor is defined as

kON Zp+1
Integer[T j; &, dz] N
T = “ = = .
" kON Zn+l kON Zn+1
=5 [e — f &, d

(12)
In (12), Integer[x] indicates the integer nearest x. Thus, the
“tweaking” factor adjusts the overall strength of &, so that
an integer number of lines will be located between each
pair of nulls, an obviously necessary graphical constraint.
The integration in (11) and (12) is performed numerically
in the general case due to the large number of modes
involved.

V. SEQUENTIAL PLOTTING OF THE ELECTRIC FIELD
LINE SEGMENTS

Due to the even symmetry of the electric field &(y, z, ¢)
about the center line y =0, we will describe the plotting
procedure only for the y >0 region. From each starting
point z, , on the y =0 axis of symmetry, a perpendicular
line segment of length A is drawn (see Fig. 3). Its end point
is (y=A4, z=z, ,). The segment length is normally be-
tween one tenth and one fiftieth of the height of the
waveguide with plotting time inversely proportional to A.

The second and subsequent line segments, but not the
last, are determined according to the following scheme.

a) Let 8, , be the direction of the (i — /)th line segment
and its end point be at p," ,= (¥, 2" ).

b) The initial direction of the ith line segment is taken to
be the same as that of the (i — /)th segment.

c) In the angular interval 4 Af, centered on the initial
direction 6,_,, the geometrical slope of a line segment with
starting point p' , and angle §, = 6,_, + 86, is simply

~ Ay
Sg,i(ot) = A_ = tan(o)

1

(13)

The slope of the electric field vector at the midpoint of the
same line segment is

co“fv[y,t,+%sin(51), zr,+ Acos(l??i), t]

SEf,l(gt)—_— A . i . °
éaz[y,ﬁ,+isin(0,), 2t + 7cos(01), t]

(14)
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Fig. 3. Angular relations in the construction of the :th segment of an

electric field line.

d) The angle §, is then varied until

[ t ”9—0 =0 (15)

where 6, is the angle of the ith line segment whose slope is
equal to the slope of the E-field at its midpoint. This is
accomplished numerically by using (13) and (15) together
with a suitable zero finding routine on a digital computer.
The angular interval 2A8 over which the zero of (15) is
sought is taken to be equal to or less than 90° in practice.

It is also convenient to avoid the case when the slopes
given by (13) and (14) become very large (6, = +90°). This
can be done by matching inverse slopes, easily derived from
(13)—(15). Indeed, if |6,_,| > 45°, then we use the inverse
slope formulation for 6, and if |6,_,| <45°, the slope
equations are employed.

VI

The sequence of line segments representing a particular
line of electric field will eventually approach the conduct-
ing waveguide top wall or curve back to the center line at
»y = 0 or perhaps simply pass beyond the interval [z, ., z,..]
in which we are interested in a field plot. Fig. 4 indicates
the eight distinct terminating regions for our particular
problem.

In the plotting sequence, each line segment’s end point
p,; is monitored to check if it has fallen into any terminat-
ing region. If it hasn’t, the plotting continues; if it has, the
next line is a terminating line whose direction is dictated
by the nature of the region, with, for example, a perpendic-
ular segment joining p; to any nearby conducting wave-
guide wall or in our case to the center line y =0. For
region 2, the terminating line joins p;* to the corner point
at y=»5,/2, z=0.

TERMINATING THE LINES

VIIL

The plotting methods described in Sections IV-VI were
implemented on a digital computer (IBM 4341) in Fortran
code. Plots of the field lines were then produced with a
Zeta 3653 SX drum plotter.

Let us first consider the asymmetric case where y =0 is
the lower wall of the waveguide structure and the upper

TaHE ELECTRIC FIELD LINE PLOTS
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Fig. 4. Terminating regions for the single E-plane step discontinuity in
waveguide.
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-Fig. 5. Electric field lines at an asymmetric 1:2 E-plane step discon-
" tinuity in parallel-plate waveguide with a TEM wave incident from the
smaller guide; b, /2 =5 =04 Ay, t=0, N=8, A=5, /6, |z| <Ay /2.

_ walls of the two parallel-plate guides are at -

b SRR
)’=0-2>\0=71 and y=.0;4}\0=—2—.

Let N=8 and A=5b,/6, a rather coarse representation

which clearly illustrates the principle of the-line segment -

method of field plotting. Fig. 5 gives the resulting plot for
the interval |z| < A, /2 and for ¢, = 0, the instant at which
the crest of the incident TEM wave is striking the junction
at z=0. The ends of line segments are marked by “+”
signs. In the smaller guide, the field lines differ omly
slightly from the vertical lines of the TEM modes. This is
due to the rapid attenuation of the higher order cutoff
modes reflected from the junction. In the larger guide, this
attenuation is considerably less and results in the field lines
curving back to the top wall at z=0. In this case, the
higher order modes in the larger guide die out for practical
purposes by z =10.50 A,, at which point there is only the
TEM transmitted wave passing out of our region of inter-
est. Accordingly, to save computation time, the maximum
number of available modes are used to compute &, and &,
in the immediate neighborhood of the discontinuity and
progressively fewer are used as |z| increases.

In the small guide at a particular value of z <0, we
employ the following criteria:

for &, if e®#* <y, # is the highest order mode used,

for &,,if e®"* <yay,, M is the highest order mode used.
The factor vy is an arbitrary small number. In the large
guide for a particular z >0, we have the corresponding
criteria: .
for &, if e™ %% <|by|y, 7 is the highest order mode used,
for &, if e™ 2" <|by|vay;,

# is the highest order mode used.
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TABLEI
NUMBER OF MODES USED AS A FUNCTION OF DISTANCE
FROM THE JUNCTION PLANE

|z[/Ag Small Guide Large Guide

0 24 24 43 3

0.10 18 14 44 32

0.25 8 8 16 14
0.50 6 6 10 8

0.75 4 4 8 6
1.00 4 4 6 6
y=10"* n i i 7

5,=0.80 A

150 Ag

Fig. 6. Electric field lines at a symmetric 1:2 E-plane step discontinuity
in parallel-plate waveguide with a TEM wave incident from the smaller
guide; b, =2b;=0.80 Ay, AT=005T, N=10, A=, /33.

|b,| is the amplitude of the dominant TEM mode scattered
into the larger guide.

Table 1 indicates the number of modes used at various
distances from the junction illustrated in Fig. 5, when the
maximum number of available modes in the smaller and
larger guides are, respectively, 12 (m = 24) and 24 (n .
= 48), and when y=10"%.

Figs. 6-8 show field line piots for the case of symmetric
junctions of parailel-plate waveguides ( E-plane steps) when
incidence is from the smaller (left) guide in the form of a
TM, wave. In all cases, the number of lines per half
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Fig. 7. Electric field lines at a symmetric 1:3 E-plane step discontinuity
in parallel plate waveguide with a TEM wave incident from the smaller
guide; b, =3b, =0.60 Ay, AT=005T, N=10, A=b, /33.
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Fig. 8. Electric field lines at a symmetric 1:3 E-plane step discontinuity
in parallel plate waveguide with a TEM wave incident from the smaller
guide; b, =3b, =120 Ay, AT=0.05T, N=10, A=b, /33.
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wavelength of the incident wave has been increased to
N =10 and the line segments decreased to A = b, /33. To
illustrate the dynamic behavior of the scattering by such
junctions, the first half of a period is covered in increments
of At =0.05 T from 0 to 0.45 T. The second half of the RF
period yields identical plots except for a reversal of the
lines of the E-field.

A 1:2 E-plane step with b; =0.4 A, and b,=0.8 A is
shown in Fig. 6. The crest of the incident wave appears at
the junction at ¢ = 0.00 T. Note the high E-field (density of
lines) at the two 90° corners (z=0, y =+ b, /2). This is
expected since the edge condition [12, p. 341] dictates that |
|E| is proportional to »~1/3, where r is the radial distance
from the corner. As the crest of the TM, wave travels past
the junction, the electric field lines can be seen terminating
on the vertical walls. Finally, the electric field lines become
nearly vertical as the higher order modes decay and the
TM, mode again dominates. The number of electric field
lines is reduced because, in this case, the TM, transmission
coefficient magnitude is |by| = 0.63.

Fig. 7 shows a 1:3 E-plane step in which b; =02 A,
and b, =0.6 A,. The waveguide dimensions of Fig. 7 are
smaller than that of Fig. 6 and thus the higher order modes
die off faster. Whereas in Fig. 6 the higher order modes
have mostly decayed by z=0.6 A, in Fig. 7 the modes
have mostly decayed by z=0.3 A, T

“ Fig. 8 shows a 1:3 E-plane step in which b, =04 A,
and b, =12 A,. The most interesting feature is the vortex
of E-field lines closing on themselves (instead of on surface
charge at y = + b, /2). This is due to the interaction of the
TEM (TM,) mode and the TM, mode which for 'a guide
height of 1.2 A is a propagating mode. Its phase velocity is
about 1.8 times the velocity of light and its amplitude is
comparable to that of the TEM mode (|b,| = 0.51, |by| =
0.31).

VIIIL

This paper has illustrated the dynamic (time varying)
behavior of electric field lines in the neighborhood of an
E-plane step discontinuity in parallel-plate waveguide. The
technique is exact in principle since plotting fnvolves a
complete set of TM modes, and the line density N and line
segment length A are arbitrary. In our examples, about 24
modes in the smaller of the two waveguides, line densities
of N =10 per half wavelength of the incident wave, and
line segments of A =3 percent of the smaller height were
used to yield the field line plots of Figs. 6-8.

In regard to computation and plotting times using the
IBM 4341 computer and the Zeta 3653 SX drum plotter,
the plot of Fig. 5 involved 50 s of time for mode coefficient
generation (24 modes in the smaller guide and 48 in the
larger) and about 80 s to calculate the electric field lines.
Plotting of each of the ten plots in Figs. 68 took about 18
min, with each original hard copy plot being about 40
cm X 20 cm.

The sequence of images of Ey, in Figs. 68 suggests that
one could make a moving picture with a sufficient number
of such “cartoons.” We have done so using Ar =025 T

DISCUSSION AND CONCLUSIONS
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and 1:2 E plane step. The resulting “film”, recorded on
video tape, lasts about 110 s and corresponds to 16 periods
of the RF field. The field lines move in somewhat jerky
fashion but we are reasonably sure that if At were reduced
to 0.0125 T and the time per period reduced to say 4 s, we
could, with a resulting frame rate of 20 per second, achieve
a very acceptable representation of the electric field lines’
dynamic behavior.

Although used here for the quite simple configuration of
an E-plane step in parallel-plate waveguide, this method is
applicable to analogous junctions in rectangular waveguide
[14]. In the near future, we are aiming at obtaining
electric field line plots in the neighborhood of a thick
diaphram with a circular iris located in rectangular wave-
guide. Later we hope to get plots for a resonator cavity
made up of two such diaphrams in rectangular waveguide.
Many other waveguide junctions can be considered.
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